Joint Information Extraction and Reasoning: A Scalable Statistical Relational Learning Approach

نویسندگان

  • William Yang Wang
  • William W. Cohen
چکیده

A standard pipeline for statistical relational learning involves two steps: one first constructs the knowledge base (KB) from text, and then performs the learning and reasoning tasks using probabilistic first-order logics. However, a key issue is that information extraction (IE) errors from text affect the quality of the KB, and propagate to the reasoning task. In this paper, we propose a statistical relational learning model for joint information extraction and reasoning. More specifically, we incorporate context-based entity extraction with structure learning (SL) in a scalable probabilistic logic framework. We then propose a latent context invention (LCI) approach to improve the performance. In experiments, we show that our approach outperforms state-of-the-art baselines over three real-world Wikipedia datasets from multiple domains; that joint learning and inference for IE and SL significantly improve both tasks; that latent context invention further improves the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Statistical Relational Learning for NLP

Prerequisites:​ No prior knowledge of statistical relational learning is required. Abstract: Statistical Relational Learning (SRL) is an interdisciplinary research area that combines first­order logic and machine learning methods for probabilistic inference. Although many Natural Language Processing (NLP) tasks (including text classification, semantic parsing, information extraction, coreferenc...

متن کامل

Scalable Relational Learning for Sparse and Incomplete Domains

The Semantic Web (SW) presents new challenges to statistical relational learning. One of the main features of SW data is that it is notoriously incomplete. Consider friend-of-a-friend (FOAF) data. The purpose of the FOAF project is to create a web of machinereadable pages describing people, their relationships, and people’s activities and interests, using SW technology. Obviously people vary in...

متن کامل

Statistical Relational Learning for Natural Language Information Extraction

1.1 Introduction Understanding natural language presents many challenging problems that lend themselves to statistical relational learning (SRL). Historically, both logical and probabilistic methods have found wide application in natural language processing (NLP). NLP inevitably involves reasoning about an arbitrary number of entities (people, places, and things) that have an unbounded set of c...

متن کامل

Propositionalization of Relational Learning: An Information Extraction Case Study

This paper develops a new propositionalization approach for relational learning which allows for efficient representation and learning of relational information using propositional means. We develop a relational representation language, along with a relation generation function that produces features in this language in a data driven way; together, these allow efficient representation of the re...

متن کامل

Learning First-Order Logic Embeddings via Matrix Factorization

Many complex reasoning tasks in Artificial Intelligence (including relation extraction, knowledge base completion, and information integration) can be formulated as inference problems using a probabilistic first-order logic. However, due to the discrete nature of logical facts and predicates, it is challenging to generalize symbolic representations and represent first-order logic formulas in pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015